
High Performance Computing
Time Complexity and Parallisation

Martin Raum

Time Complexity

Given a program or algorithm (assuming a suitable machine model)
that depends on a parameter n, or input of size n,
we say that it has time complexity (or runtime) O(f (n))
for a function f : Z≥n0 →R,
defined on a Z≥n0 := {n ∈Z : n ≥ n0} for some integer n0,
if there is a constant time span c and an integer n1 ≥ n0 such that

runtime for parameter/input size n ≤ c · f (n) for all n ≥ n1.

Alternative, one writes O(f (n)), but this does not coincide with
the definition of O(·) in mathematics.

1

Time Complexity

For example, summing the first n integers naively has time
complexity O(n).

Summing the first n integers via the formula n(n+1)/2 time
complexity O(log(n)∗).

There are algorithms to solve the travelling salesperson problem in
time complexity O(n22n). It is not known whether there is an
algorithm that solves in O(p(n)) for some polynomial function p.

2

Time complexity of parallelized programs

Parallelization gives rise to a new parameter r , the number of
compute instances (compute nodes/processes/threads).

Contributions to the runtime TIME(n;r) split up into three
fundamentally different terms:

sequential TIMEseq(n)
parallelizable TIMEpar(n), and
communication/synchronization TIMEsync(n).

A naive approach gives

TIME(n;r) = TIMEseq(n)+ 1
r TIMEpar(n)+ rTIMEsync(n).

3

Optimally parallelized programs

TIME(n;r) = TIMEseq(n)+ 1
r TIMEpar(n)+ rTIMEsync(n)

attains its minimum at

r =
√

TIMEpar(n)
TIMEsync(n)

and the estimated optimal runtime is

TIMEseq(n)+2
√

TIMEpar(n)TIMEsync(n).

4

Optimally parallelized programs

Due to the effort of synchronization the best possible number of
compute instance is limited. In many problems, TIMEsync(n) is so
marginal, that effectively this bound is not reached:

TIMEseq(n)+2
√

TIMEpar(n)TIMEsync(n) −→ TIMEseq(n)

as TIMEsync(n)→ 0.

5

Sub-optimally parallelized programs

In many real-world attempts to “scalar up” a system, however, the
impact of TIMEsync(n) deteriorates efforts.

Assuming naively that an implementation that is not parallelized
has runtime

TIMEseq(n)+TIMEpar(n),

we have to require that

TIMEseq(n) ≤ TIMEpar(n)p
2

in order to beat it with a parallelized one.

But close to this cut-off the optimal number of computing
instances is ≈ 1/

p
2< 1, while in reality a systems “in the cloud”

run on hundreds of nodes.
6

Sub-optimally parallelized programs

For given r , to achieve

TIME(n;r) = TIMEseq(n)+ 1
r TIMEpar(n)+ rTIMEsync(n)

≤ TIMEseq(n)+TIMEpar(n)

we have to have

TIMEsync(n)
TIMEpar(n) ≤ 1

r

(
1− 1

r

)
→ 1

r as r →∞.

If your big data computation on 1000 nodes in the cloud consists
of matching ten words in a text, you might violate this bound.

7

Asymptotic time complexity

It is also legitimate to analyze TIME(n;r) for n →∞, but this
requires estimates or expressions for the contributions TIMEseq(n),
TIMEpar(n), and TIMEsync(n).

8

Asymptotic time complexity

The runtime of a matrix-vector multiplication of size n on a single
node is approximately 2n2t, where t denotes the time consumed
for one floating point operation.

A parallelized variant in which the matrix gets sliced could, for
example, achieve

2n2t
r + (r −1)

(
l + nb

r

)
,

where l and b denote the latency and bandwidth of an underlying
communication system.

As n →∞ is is asymptotically 2n2t/r .

9

Speedups

Instead of time complexity one can consider speedups. The
following two approaches to speedups put emphasis on different
aspects.

Focusing on the problem:

SPEEDUP(r) = best possible runtime achieved on 1 node
runtime achieved with r nodes .

Focusing on algorithm or implementation:

SPEEDUP(r) = time achieved on 1 node
time achieved on r nodes .

10

Superlinear speedup

Effects like memory locality can yield

SPEEDUP(r) > 1.

For instance, L1 cache is usually attached to each core, therefore
there is more L1 cache available in total when parallelizing a
program.

11

